Energy performance certificate (EPC)

68 BURLEIGH FARM JCN TO THE SYTCH CROSS ROADS BOLAS HEATH TELFORD TF6 6PW **Energy rating**

G

Valid until 26 January 2031

Certificate number

8839-9329-7000-0266-3222

Property type

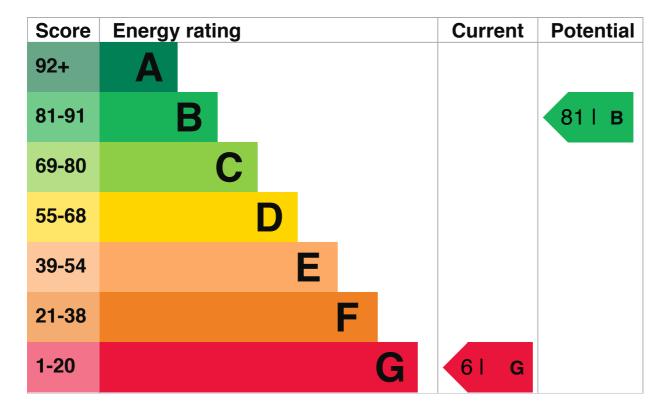
Detached house

Total floor area

95 square metres

Rules on letting this property

You may not be able to let this property


This property has an energy rating of G. It cannot be let, unless an exemption has been registered. You can read <u>guidance for landlords on the regulations and exemptions (https://www.gov.uk/guidance/domestic-private-rented-property-minimum-energy-efficiency-standard-landlord-guidance)</u>.

Properties can be rented if they have an energy rating from A to E. The <u>recommendations section</u> sets out changes you can make to improve the property's rating.

Energy efficiency rating for this property

This property's current energy rating is G. It has the potential to be B.

See how to improve this property's energy performance.

The graph shows this property's current and potential energy efficiency.

Properties are given a rating from A (most efficient) to G (least efficient).

Properties are also given a score. The higher the number the lower your fuel bills are likely to be.

The average energy rating and score for a property in England and Wales are D (60).

Breakdown of property's energy performance

This section shows the energy performance for features of this property. The assessment does not consider the condition of a feature and how well it is working.

Each feature is assessed as one of the following:

- very good (most efficient)
- good
- average
- poor
- very poor (least efficient)

When the description says 'assumed', it means that the feature could not be inspected and an assumption has been made based on the property's age and type.

Feature	Description	Rating
Wall	Sandstone or limestone, as built, no insulation (assumed)	Very poor
Wall	Cavity wall, as built, no insulation (assumed)	Poor
Roof	Pitched, no insulation (assumed)	Very poor
Roof	Flat, no insulation (assumed)	Very poor
Window	Partial double glazing	Poor

Feature	Description	Rating
Main heating	Boiler and radiators, dual fuel (mineral and wood)	Poor
Main heating control	No time or thermostatic control of room temperature	Very poor
Hot water	From main system, no cylinder thermostat	Very poor
Lighting	Low energy lighting in 40% of fixed outlets	Average
Floor	Solid, no insulation (assumed)	N/A
Secondary heating	Room heaters, dual fuel (mineral and wood)	N/A

Primary energy use

The primary energy use for this property per year is 730 kilowatt hours per square metre (kWh/m2).

What is primary energy use?

Environmental impact of this property

One of the biggest contributors to climate change is carbon dioxide (CO2). The energy used for heating, lighting and power in our homes produces over a quarter of the UK's CO2 emissions.

An average household produces

6 tonnes of CO2

This property produces

15.0 tonnes of CO2

This property's potential production

3.5 tonnes of CO2

By making the <u>recommended changes</u>, you could reduce this property's CO2 emissions by 11.5 tonnes per year. This will help to protect the environment.

Environmental impact ratings are based on assumptions about average occupancy and energy use. They may not reflect how energy is consumed by the people living at the property.

How to improve this property's energy performance

Making any of the recommended changes will improve this property's energy efficiency.

If you make all of the recommended changes, this will improve the property's energy rating and score from G (6) to B (81).

What is an energy rating?

Recommendation 1: Flat roof or sloping ceiling insulation

Flat roof or sloping ceiling insulation

Typical installation cost

£850 - £1,500

Potential energy

rating

Typical yearly saving

£228

Potential rating after carrying out recommendation 1

Recommendation 2: Cavity wall insulation

Cavity wall insulation

Typical installation cost

£500 - £1,500

Typical yearly saving

£219

Potential rating after carrying out recommendations 1 and 2

Recommendation 3: Internal or external wall insulation

Internal or external wall insulation

Typical installation cost

£4,000 - £14,000

26 I F

Recommendation 4: Floor insulation (solid floor)

Floor insulation (solid floor)

Typical installation cost

£4,000 - £6,000

Typical yearly saving

£127

Potential rating after carrying out recommendations 1 to 4

29 I F

Recommendation 5: Hot water cylinder insulation

Insulate hot water cylinder with 80 mm jacket

Typical installation cost

£15 - £30

Typical yearly saving

£324

Potential rating after carrying out recommendations 1 to 5

37 I F

Recommendation 6: Draught proofing

Draught proofing

Typical installation cost

£80 - £120

Typical yearly saving

37 I F

Recommendation 7: Low energy lighting

Low energy lighting

Typical installation cost

£30

Typical yearly saving

£34

Potential rating after carrying out recommendations 1 to 7

38 I F

Recommendation 8: Heating controls (programmer, room thermostat and TRVs)

Heating controls (programmer, thermostat, TRVs)

Typical installation cost

£350 - £450

Typical yearly saving

£170

Potential rating after carrying out recommendations 1 to 8

43 I E

Recommendation 9: Solar water heating

Solar water heating

Typical installation cost

£4,000 - £6,000

Typical yearly saving

49 I E

Recommendation 10: Double glazed windows

Replace single glazed windows with low-E double glazed windows

Typical installation cost

£3,300 - £6,500

Typical yearly saving

£76

Potential rating after carrying out recommendations 1 to 10

51 I E

Recommendation 11: Solar photovoltaic panels, 2.5 kWp

Solar photovoltaic panels

Typical installation cost

£3,500 - £5,500

Typical yearly saving

£339

Potential rating after carrying out recommendations 1 to 11

61 I D

Recommendation 12: Wind turbine

Wind turbine

Typical installation cost

£15,000 - £25,000

Typical yearly saving

Paying for energy improvements

Find energy grants and ways to save energy in your home. (https://www.gov.uk/improve-energy-efficiency)

Estimated energy use and potential savings

Estimated yearly energy cost for this property

£3292

Potential saving

£1942

The estimated cost shows how much the average household would spend in this property for heating, lighting and hot water. It is not based on how energy is used by the people living at the property.

The estimated saving is based on making all of the recommendations in how to improve this property's energy performance.

For advice on how to reduce your energy bills visit Simple Energy Advice (https://www.simpleenergyadvice.org.uk/).

Heating use in this property

Heating a property usually makes up the majority of energy costs.

Estimated energy used to heat this property

Space heating

25800.0 kWh per year

Water heating

7225.0 kWh per year

Potential energy savings by installing insulation

Type of insulation Amount of energy saved

Loft insulation 2255 kWh per year

Cavity wall insulation 2412 kWh per year

Solid wall insulation 6384 kWh per year

You might be able to receive Renewable Heat Incentive payments (https://www.gov.uk/domestic-renewable-heat-incentive). This will help to reduce carbon emissions by replacing your existing heating system with one that generates renewable heat. The estimated energy required for space and water heating will form the basis of the payments.

Contacting the assessor and accreditation scheme

This EPC was created by a qualified energy assessor.

If you are unhappy about your property's energy assessment or certificate, you can complain to the assessor directly.

If you are still unhappy after contacting the assessor, you should contact the assessor's accreditation scheme.

Accreditation schemes are appointed by the government to ensure that assessors are qualified to carry out EPC assessments.

Assessor contact details

Assessor's name

Steven Knight

Telephone

01743 354424

Email

domesticenergyratings@hotmail.co.uk

Accreditation scheme contact details

Accreditation scheme

Elmhurst Energy Systems Ltd

Assessor ID

EES/001123

Telephone

01455 883 250

Email

enquiries@elmhurstenergy.co.uk

Assessment details

Assessor's declaration

No related party

Date of assessment

26 January 2021

Date of certificate

27 January 2021

Type of assessment

► RdSAP

Other certificates for this property

If you are aware of previous certificates for this property and they are not listed here, please contact us at mhclg.digital-services@communities.gov.uk, or call our helpdesk on 020 3829 0748.

There are no related certificates for this property.