

Compliance with England and Wales Building Regulations Part L

Project name

Ebbw Vale

As built

Date: Thu Jan 28 14:06:11 2010

Administrative information

Building Details

Address: Ebbw Vale Innovation Center, ,

Certification tool

Calculation engine: SBEM

Calculation engine version: v3.4.a

Interface to calculation engine: DDB PartL

Interface to calculation engine version: v25.00

BRUKL compliance check version: v3.4.a

Occupier Details

Name: Information not provided by the user

Telephone number: Information not provided by the user Address: Information not provided by the user, Information

not provided by the user, Information not provided

by the user

Certifier details

Name: Ben Gibbons

Telephone number: 01452 429820

Address: Meadow House, 12 Sabre Close, Green Farm,

Quedgeley, Gloucester, GL2 4NZ

Criterion 1: Predicted CO2 emission from proposed building does not exceed the target

1.1	Calculated CO2 emission rate from notional building	70.9 KgCO2/m2.annum
1.2	Improvement factor	0.2
1.3	LZC benchmark	0.1
1.4	Target CO2 Emission Rate (TER)	51 KgCO2/m2.annum
1.5	Building CO2 Emission Rate (BER)	39.6 KgCO2/m2.annum
1.6	Are emissions from building less than or equal to the target?	BER =< TER
1.7	Are as built details the same as used in BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and the building services systems should be no worse than the design limits

2.1 Are the U-values better than the design limits? Better than design limits

Element	U _{a-Limit}	U _{a-Calc}	U i-Limit	U _{i-Calc}	Surface where this maximum value occurs*
Wall**	0.35	0.29	0.7	0.29	120 Wall 1
Floor	0.25	0.2	0.7	0.2	120 Exposed Floor 1
Roof	0.25	0.22	0.35	0.22	121 Exposed Roof 3
Windows***, roof windows, and rooflights	2.2	1.2	3.3	1.22	120 Door 1
Personnel doors	2.2	0	3	0	"No Personnel doors in project"
Vehicle access & similar large doors	1.5	0	4	0	"No Vehicle access doors in project"
High usage entrance doors	6	0	6	0	"No High usage entrance doors in project"

Ja-Limit = Limiting area-weighted average U-values [W/(m2K)]

U_{a-Calc} = Calculated area-weighted average U-values [W/(m2K)]

U_{i-Limit} = Limiting individual element U-values [W/(m2K)]

U_{i-Calc} = Calculated individual element U-values [W/(m2K)]

** Automatic U-value check by the tool does not apply to curtain walls whose limiting standards are similar to those for windows.

*** Display windows and similar glazing are not required to meet the standard given in this table.

^{*} There might be more than one surface exceeding the limiting standards.

Air Permeability	Worst acceptable standard	This building (Design value)
m3/(h.m2) at 50 Pa	10	7

2.3 Are all building services standards acceptable?

2.3a-1 HVAC 1

HVAC system standard is acceptable

Efficiency check	Limiting heat source seasonal efficiency	This building
Heat source efficiency	2	4.68
limpiting official in the second		
	Il types of heat pump except absorption and gas engine.	I
Efficiency check	Limiting Cooling Nominal efficiency	This building

2.3a-2 HVAC 2

HVAC system standard is acceptable

Efficiency check	Limiting heat source seasonal efficiency	This building
Heat source efficiency	0.84	0.9
0.84 is the overall limiting efficiency a multiple boiler system the	ency for a single or a multiple boiler system. I limiting efficiency for any individual boiler is 0.80.	0.0

2.3b- "No HWS in project, or hot water is provided by HVAC system"

2.4	Does fixed internal lighting comply with England and Wales Building Regulations Part L paragraphs 49 to 61?	Separate submission	
	Are energy meters installed in accordance with GIL65?	Separate submission	\neg

Criterion 3: The spaces in the building without air-conditioning have appropriate passive control measures to limit the effects of solar gains

3.1 Method of showing compliance with England and Wales Building Regulations Part L in paragraph 64?	Separate submission	
--	---------------------	--

Criterion 4: The performance of the building, as built, is consistent with the BER

4.1	Have the key features of the design been included (or bettered) in practice?	Separate submission
4.2	Is the level of thermal bridging acceptable?	Separate submission
4.3	Has satisfactory documentary evidence of site inspection checks been produced?	Separate submission

4.4 Design air permeability

Air Permeability	Worst acceptable standard	This building (Design value)
m3/(h.m2) at 50 Pa	10	7

4.5	Has evidence been provided that demonstrates that the design air permeability has been achieved satisfactorily?	Separate submission
	1/2/2	Separate submission
4.7	Has evidence been provided that demonstrates that the ductwork is sufficiently airtight?	Separate submission

Criterion 5: Providing information

5.1 Has a suitable building log-book been prepared?	Separate submission	
---	---------------------	--

Technical Data Sheet (Actual vs. Notional Building)

Building Global Parameters

	Actual	Notional
Area (m2)	1777	1777
External area (m2)	3091	3091
Weather	CAR	CAR
Infiltration (m3/hm2 @ 50Pa)	7	10
Average conductance (W/K)	1027.99	2382.31
Average U-value (W/m2K)	0.33	0.77
Alpha value (%)	11.47	10

ype	
Building Ty	Office
% area	100

Primary school

Secondary school

Further education universities

Nursing residential homes and hostels Primary health care buildings

Hospital

Hotel

Restaurant/public house

Sports centre/leisure centre

Sports ground arena Retail Warehouse and storage

Theatres/cinemas/music halls and auditoria

Social clubs

Libraries/museums/galleries Community/day centre

Prisons

Crown and county courts Emergency services

Airport terminals

Bus station/train station/seaport terminal Workshops/maintenance depot

Felephone exchanges

Industrial process building Launderette

Dwelling

Retail warehouses

Miscellaneous 24hr activities

HVAC Systems Performance

						q	1000			
Syste	System Type	Heat dem	Cool dem	Heat dem Cool dem Heat con Cool con Aux con Heat	Cool con	Aux con	Heat	Cool	Heat gen	Heat gen Cool gen
2		MJ/mZ	MJ/m2	MJ/m2 MJ/m2 kWh/m2 kWh/m2 SSEEF	kWh/m2	kWh/m2	SSEEF	SSEER	SEFF	SEER
[ST]	Split or m	[ST] Split or multi-split system, [HS] Heat pump (electric): air source, [HFT] Grid Supplied Electricity, [CFT] Grid Su	stem, [HS] I	Heat pumb	(electric): a	ir source,	[HFT] Grid §	Supplied El	ectricity, [C	FT] Grid Su
4	Actual	124.4	300.1	7.9	25.1	4.9	4.36	3.32	4.68	4.68
z	Notional 218.3	218.3	405.7	73.1	67.5	27.5	0.83	1.67	1	1
[ST]	Sentral he	[ST] Central heating using water: radiators, [HS] LTHW boiler, [HFT] Natural Gas, [CFT] Grid Supplied Electricity	water: rad	iators, [HS]	LTHW boil	ler, [HFT] N	atural Gas,	[CFT] Grid	Supplied E	lectricity
4	Actual	141.3	18.9	48.9	0	8.3	0.8	0	6.0	0
Z	Notional 190.8	190.8	29	68	0	4	0.73	0		
[ST]	No Heatin	[ST] No Heating or Cooling, [HS] LTHW boiler, [HFT] Oil, [CFT] Grid Supplied Electricity	g, [HS] LTH	W boiler, [H	IFT] Oil, [C	FT] Grid St	upplied Elec	tricity		
4	Actual	0	3.4	0	0	0	0	0	0	0
z	Notional 0	0	13.7	0	0	0	0	0		1

upplie

Key to terms

Heat dem (MJ/m2) Alpha value (%)

= percentage of the building's average heat transfer coefficient which is due to thermal bridging

Heat con (kWh/m2) Cool con (kWh/m2) Cool dem (MJ/m2)

= Cooling energy demand

Aux con (kWh/m2) Heat SSEFF

Heat gen SSEFF Cool SSEER

Cool gen SSEER ST HS HFT CFT

= Cooling fuel type

= Cooling generator seasonal energy efficiency ratio = Cooling system seasonal energy efficiency ratio = Heating generator seasonal efficiency Heating system seasonal efficiency = Auxiliary energy consumption = Cooling energy consumption = Heating energy consumption

= Heating fuel type = System type = Heat source